DeDAUBP DEDAUB. COM

9inch

Smart Contract Security Assessment

Sep 10, 2023

DeDAUBP DEDAUB.. COM

ABSTRACT

Dedaub was commissioned to perform a security audit of the staking pools of the 9inch
protocol. The staking pools combine a Masterchef contract for rewards distribution, and
staking pools adapted from PancakeSwap staking contracts on BSC.

SETTING & CAVEATS

The protocol repository is currently private, at 9inchswap/9InchSM. We had previously

performed a short audit over the delta of changes of the entire 9inch protocol relative to
the underlying forked protocols. The report can be found here. Specifically for the
changes to the staking pools, which are over two PancakeSwap public contracts (1,2) on
BSC (and not in the PancakeSwap current public repository), we had (in our ealier audit)
considered the diff between the original code and commit
0573a9e785d6d971c6f081ca7dd7eccha®d52f09 of the 9inch repo. However, several
protocol-level considerations were raised and a number of efficiency concerns were
mentioned leading to the need to perform this second audit over the changes in the
Staking Pools. The current audit was not focused on the delta changes only. We audited
the Staking Pools from scratch based on commit
€262046798aec021091bb1a839bf4491c98a58d7. Fixes were reviewed at commit
e87e2ae8cce6017598290dff£9511b0907313255. (The latter fix commit also includes other
changes that do not pertain to this report’s scope.)

The Staking Pools of the previous audit were sharing the same contract for both the pure
BBC (i.e. staking token and reward token are both BBC) and non-pure BBC (i.e. staking
token is not BBC, while reward is BBC) pools. The changes in the current audit were
mainly focused on splitting the pure and the non-pure pools into two separate contracts.
Additionally, Flexible and Fixed-Term pools have the same underlying codebase, with
the flexible pool contract overriding key parts of the functionality. In total, the auditing
effort was over files:

https://github.com/9inchswap/9InchSM
https://docs.google.com/document/d/19xDx0JHFXtqtfDohxt6g1ImYP9TFgcnOL9kv7czxQkI/edit?usp=sharing
https://bscscan.com/address/0x615e896a8c2ca8470a2e9dc2e9552998f8658ea0
https://bscscan.com/address/0x45c54210128a065de780c4b0df3d16664f7f859e

DeDAUBP DEDAUB.. COM

contracts/pool/
CakeFlexiblePool.sol
CakePool.sol
TokenFlexiblePool.sol
TokenPool.sol

Several of the additions to the PancakeSwap staking contracts implement the ability to
stake arbitrary tokens (or rather, more tokens than just the reward token)

Two auditors were commissioned to work on the codebase for 5 working days.

The audit’s main target is security threats, i.e., what the community understanding
would likely call “hacking®, rather than the regular use of the protocol. Functional
correctness (i.e., issues in “regular use®) is a secondary consideration. Typically it can
only be covered if we are provided with unambiguous (i.e., full-detail) specifications of
what is the expected, correct behavior. In terms of functional correctness, we often
trusted the code’s calculations and interactions, in the absence of any other
specification. Functional correctness relative to low-level calculations (including units,
scaling and quantities returned from external protocols) is generally most effectively
done through thorough testing rather than human auditing.

PROTOCOL-LEVEL CONSIDERATIONS

General Pool Codebase Considerations

Our earlier audit “advise[d] a redesign of the staking part of the protocol” noting that
“[w]ith the current underlying contracts, confidence in the correctness of the final
implementation will be low.”

We also noted:

DeDAUBP DEDAUB.. COM

Accordingly, the test suite of the project needs to be substantially extended. Right now
only basic interactions with the two staking pools are captured in tests. Extensive
interactions, under all corner cases, should be fully tested. Both for
pureBBC/non-pureBBC cases, all fees should be tested to be computed correctly (and
transferred correctly to the appropriate parties), all balances should be checked in
complex scenarios involving multiple stakers, all reward rates should be calculated
analytically (in a spreadsheet) and the test cases should check that the code
computes them correctly, and several conditions should be exercised (e.g., deposit of
0 amount, which is permitted in the code) to ensure that the computations are stable
and do not confer an advantage or penalty to the staker.

The latter recommendation (for more extensive testing) was not addressed in the
revision considered during this audit. In fact, our testing did reveal serious issues (C1) by
following exactly the testing strategy outlined above: trying equivalent stakes to ensure
that the computations are stable and do not confer an advantage or penalty to the
staker. (The issue turned out to be invalid and caused by other changes, but was not
possible to dismiss without a more thorough test suite.)

Upon the final fix review (commit e87e2ae8cce6017598290dfff9511b0907313255), the
test suite was extended, lending much more confidence to the validity of the staking
operations.

Pools Deployment & Usage Considerations

There are several considerations when deploying and using the staking pools. We outline
them below because they are easy to miss:

e The parent contracts, CakePool and CakeFlexiblePool should only be used with
token == bbc, i.e., for pure BBC pools. For non-pure BBC pools, the children
contracts, TokenPool and TokenFlexiblePool, should be used instead. (This
property is not easily enforceable in the code, since the constructors of the parent

DeDAUBP DEDAUB.. COM

contracts are reused in the children.) Otherwise, using a CakePool with token !=
bbc would result in the users being unable to claim their earned BBC rewards
since no claim functionality seems to be present and all transfers are made over

the staking tokens only.

e The flexible pool contracts, CakeFlexiblePool and TokenFlexiblePool, should be
whitelisted in the non-flexible pool contracts (CakePool and TokenPool
correspondingly) so that they do not incur withdrawal fees. This is especially
important for TokenFlexiblePool, otherwise, a key computation returns the wrong
result. Namely, the following function blindly trusts that the credit that the
flexible pool has in the parent pool is equal to the amount it has deposited init.

TokenFlexiblePool: :balanceOf() :205

function balanceOf() public override view returns (uint256) f{
return totalStakedAmount;

We generally advise revising the above function so that it is less brittle: the
balance of a flexible pool in terms of the staking token should be exactly what the

parent pool believes it is, not some quantity maintained by the flexible pool alone.

e Users can stake with a zero lock duration directly in the parent (non-flexible, i.e.,
CakePool) pool instead of using the flexible pool (i.e., CakeFlexiblePool). These
two staking approaches are not equivalent but subtly different. Additionally,
neither one matches the published PancakeSwap documentation of flexible

pools, exhibiting small differences.

Specifically, the non-flexible pools charge a withdrawal fee when someone
withdraws their principal earlier than 3 days from their last deposit, except when
the user has been whitelisted inside freeWithdrawFeeUsers.

CakePool: :withdrawOperation() :493

DeDAUBP DEDAUB.. COM

uint256 public withdrawFeePeriod = 72 hours; // 3 days

function withdrawOperation(
uint256 _shares,
uint256 _amount

) internal virtual 3

// Calculate withdraw fee
if (!freeWithdrawFeeUsexrs[msg.sender] &&
(block.timestamp < user.lastDepositedTime + withdrawFeePeriod)

) 1

uint256 currentWithdrawFee = (currentAmount * withdrawFee) /
FEE_RATE_SCALE;

token.safeTransfer(treasury, currentWithdrawFee);

currentAmount -= currentWithdrawFee;

h

token.safeTransfer(msg.sender, currentAmount);

Per the earlier bullet item, flexible pools should be whitelisted in the parent pools
(non-flexible pools) so that they do not incur withdrawal fees which could affect

their internal accounting (see TokenFlexiblePool description).

Notably, the PancakeSwap documentation of flexible pools does not match the
behavior in the code. (9inch did not change that logic in the implementation.) The

documentation of flexible pools states:

Unstaking Fee

e 0.1% if you unstake (withdraw) within 72 hours.

e Only applies within 3 days of manually staking.

e After 3 days, you can unstake with no fee.

e The 3-day timer resets every time you manually stake more CAKE in the

pool.

DeDAUBP DEDAUB.. COM

e This fee only applies to manual unstaking: it does not apply to automatic
compounding.

As discussed, flexible pools should not incur a withdrawal fee (and do not in the
current PancakeSwap setup either).

Furthermore, the current configuration of non-flexible pools also incurs no
withdrawal fee! The minimum lock duration is 7 days, rendering the withdrawal fee
useless, since at withdraw time more than 3 days from staking must have
elapsed.

All the above comments lead to the conclusion that this withdrawal fee becomes
redundant as it will not be used at any point. The non-flexible pool users can’t be
charged as the minimum lock duration (7 days) exceeds the 3-day period that the
fee defines and the flexible pools are whitelisted in the parent pools meaning that
they are not charged any withdrawal fees either.

So, some protocol-level decisions should be made here in order to decide which is
the desired behavior and take care of implementing it properly without
introducing issues and edge cases like the ones described above.

e Attention is also needed if, in the future, the protocol needs to be refactored and
the MIN_LOCK_DURATION changes. Having in mind the above, this constant
variable in the non-flexible pools code should not be set to anything less than the
value of the withdrawFeePeriod variable. Otherwise, there could be cases where
the non-flexible pool stakers would have to pay withdrawal fees when the locking
period ends and they attempt to withdraw their principal and rewards.

For example, assume a MIN_LOCK_DURATION of 2 days and a
withdrawFeePeriod of 3 days. Then if someone locks his stake for the minimum
possible duration (2 days), then he will lose some of his principal and rewards

when withdrawing.

DeDAUBP DEDAUB.. COM

CakePool: :withdrawOperation:495
TokenPool: :withdrawOperation:343

// Calculate withdraw fee
if (!freeWithdrawFeeUsers[msg.sender] &&
(block.timestamp < user.lastDepositedTime + withdrawFeePeriod)

The variables of interest that need to be aligned for this to be prevented are the
following:

e MAX_WITHDRAW_FEE_PERIOD
e MIN_LOCK_DURATION
e withdrawFeePeriod

If the code maintains the following condition then the problem would be
prevented as the withdrawFeePeriod can be set only up to the
MAX_WITHDRAW_FEE_PERIOD value.

VULNERABILITIES & FUNCTIONAL ISSUES

This section details issues affecting the functionality of the contract. Dedaub generally
categorizes issues according to the following severities, but may also take other
considerations into account such as impact or difficulty in exploitation:

Category Description

Can be profitably exploited by any knowledgeable third-party attacker
CRITICAL | to drain a portion of the system’s or users’ funds OR the contract does

not function as intended and severe loss of funds may result.

Third-party attackers or faulty functionality may block the system or

DeDAUBP DEDAUB.. COM

cause the system or users to lose funds. Important system invariants
can be violated.

Examples:
e User or system funds can be lost when third-party systems
misbehave.
e DoS, under specific conditions.
e Part of the functionality becomes unusable due to a programming

error.

Examples:
e Breaking important system invariants but without apparent
LOW consequences.
e Buggy functionality for trusted users where a workaround exists.
e Security issues which may manifest when the system evolves.

Issue resolution includes “dismissed” or “acknowledged” but no action taken, by the
client, or “resolved”, per the auditors.

CRITICAL SEVERITY:

ID Description STATUS

. . DISMISSED
Rewards are not correct, can be manipulated via -
C1 (invalid issue, upon

staging of stake/unstake operations e et)

The rewards yielded by the staking contracts vary greatly and can confer an unfair
profit to a manipulator, at the expense of others.

For instance, in the test suite of the repository itself (cakepools.js) one can replace

the deposit action:

DeDAUBP DEDAUB.. COM

await track(
CakeVault.connect(alice), 'deposit', parsekEther('10'), 86400 * 7)

await track(
CakeVault.connect(alice), 'deposit', parseEther('1'), 86400 % 7)

for (let i =0; 1 < 9; i++) 1
await track(CakeVault.connect(alice), 'deposit', parseEther('1'), 0)

The result for the staker is 244.7 instead of 139.1 BBC upon withdrawing.

The same potential for manipulation can be observed by making many small
withdrawals instead of a single big one. The effect persists when one changes the
staking period and block advancement to more realistic numbers, or when trying larger
deposit quantities.

In general, the rewards boosting mechanism of MasterChefV2 seems to not account
correctly for the claimed rewards. It is not clear without further inspection (mostly of
code outside the audit scope) what is the source of the error, but it seems to be an error
of omission, with the most likely culprit being the removal of function
updateBoostContractInfo (as well as the calls to it). Via this function, the boost
contract adjusts the boost factor (calling the appropriate update function in
MasterChef) when a deposit or withdrawal takes place.

function updateBoostContractInfo(address _user) internal {
if (boostContract != address(0)) {
UserInfo storage user = userInfo[_user];
uint256 lockDuration = user.lockEndTime - user.lockStartTime;
IBoostContract(boostContract).onCakePoolUpdate(
_user,
user.lockedAmount,

DeDAUBP DEDAUB.. COM

lockDuration,
totallLockedAmount,
DURATION_FACTOR

HIGH SEVERITY:

ID Description STATUS
RESOLVED
H1 [Precision is lost for tokens with > 18 decimals (check for >= 18 decimals

added in commit 2929d7e)

The revised codebase made several adjustments to address the possibility of tokens
with more or fewer than 18 decimal digits. There is still, however, an insidious issue for
tokens with > 18 decimals. Both in TokenPool and in TokenFlexiblePool, the code
makes shares be denominated in the same decimals as the staking token. The main

code that converts staking amounts to shares is:

TokenPool: :depositOperation() :227

if (totalShares != 0) {

t else 3
currentShares = _amount;

However, this means that the number of shares has the same decimals as the
decimals of the staking token. But then, calculations like this lose precision:

10

DeDAUBP DEDAUB.. COM

E.qg., if the staking token has 36 decimals, then bbcPexShare will have 0 decimals, i.e.,

will lose all precision.

Further quantities will then have the wrong number of decimals, since bbcPexrShare is
no longer really denominated in BBC precision. However, notably, even if a quantity
derived from bbcPerShare happens to have the correct number of decimals, it will
have lost precision, likely being rounded to zero.

The issue seems to be addressable by just converting all staking token amounts to
18-decimal-precision before they become share amounts. However, full resolution of
the issue also requires adding to the test suite scenarios with tokens with both more
and fewer than 18 decimals. The tests should examine whether the final amounts are
correct, and not merely whether they have the right number of decimals.

MEDIUM SEVERITY:
ID Description STATUS
RESOLVED
M1 | CakePool: :unlock should best be nonReentrant (commit 7136b90)

The function CakePool: :unlock allows any user to call it, if operating on the user’s
own account. The function performs a depositOperation, which checks and updates
several storage variables. To eliminate the possibility of reentrancy, this function
should be declared nonReentrant, just like other entry points of depositOperation.
We have not identified a specific attack vector, however.

CakePool: :unlock() :269

11

DeDAUBP DEDAUB.. COM

function unlock(
address _user
) public onlyOperatorOrBBCOwner(_user) whenNotPaused {
UserInfo storage user = userInfo[_user];
require(
user.locked && user.lockEndTime < block.timestamp,
"Cannot unlock yet"
)

depositOperation(0, O, _user);

LOW SEVERITY:
[No low severity issues]
CENTRALIZATION ISSUES:

It is often desirable for DeFi protocols to assume no trust in a central authority, including
the protocol’s owner. Even if the owner is reputable, users are more likely to engage with
a protocol that guarantees no catastrophic failure even in the case the owner gets
hacked/compromised. We list issues of this kind below. (These issues should be
considered in the context of usage/deployment, as they are not uncommon. Several
high-profile, high-value protocols have significant centralization threats.)

ID Description STATUS

N1 | Protocol owner/admins should be trusted OPEN

The protocol owner has privileges for, e.g., pausing the protocol, disabling staking
(report item A1), but also withdrawing all reward tokens, in the case of non-pure pools:

12

DeDAUBP DEDAUB.. COM

function inCaseTokensGetStuck(address _token) public onlyAdmin {
require(
_token != address(token),
"Token cannot be same as deposit token"

)

uint256 amount = IERC20(_token).balanceOf(address(this));
IERC20(_token).safeTransfer(msg.sender, amount);

It is not straightforward for the protocol owner to appropriate staking tokens, but there
may be a combination of actions to do so. Given that the owner is already privileged,

we have not considered scenarios of attack-by-owner further.

OTHER / ADVISORY ISSUES:

This section details issues that are not thought to directly affect the functionality of the
project, but we recommend considering them to be sure that they have been taken into

account and not merely overlooked.

ID Description STATUS

Al | Staking state is finalized upon an emexgencyWithdraw INFO

In CakeFlexiblePool, the staking flag cannot be reset to true once set to false.

CakeFlexiblePool: :emexrgencyWithdraw() :193

function emergencyWithdraw() public onlyAdmin %
require(staking, "No staking bbc");
staking = false;
parentPool.withdrawAll();

13

DeDAUBP DEDAUB.. COM

This seems to be by design and changing it requires more revisions (e.qg., to prevent a

user from losing their share by trying to unstake when staking is false).

A2 | Inconsistencies in names and comments INFO

Below is a list of observed inconsistencies or typos in the code:

CakePool:

e |nconsistent comment

e There are several different scales for fees. E.g., overdue fees are scaled at el0,
other fees are scaled at e2 and others at the FEE_RATE_SCALE below. (Also this

variable could be made immutable, for gas savings.)

e The functions setOverdueFeeUser and setWithdrawFeeUser do not follow the
naming style used in setFreePerformanceFeeUser. All these, are setters that
whitelist users from being charged by these fee categories.

function setFreePerformanceFeeUser(...) 1 .t
function set[Free]OverdueFeeUser (...) § ... %
function set[Free]WithdrawFeeUser (...) { .}

TokenFlexiblePool:

14

DeDAUBP DEDAUB.. COM

e Inconsistent comment (copy-paste):

Staking pools should best not be used with tokens that
A3 INFO

perform call-backs to the sender

The current implementation of deposit operations on all staking pools (CakePool,
TokenPool, CakeFlexiblePool, TokenFlexiblePool) violates the
checks-effects-interactions (CEl) pattern if a transferFrom makes a call-back to an

untrusted sender of funds. E.q.,

if (_amount > 0) 3%
token.safeTransfexrFrom(_user, address(this), _amount);
currentAmount = _amount;

// Calculate lock funds
if (user.shares > 0 && user.locked) 1
userCurrentLockedBalance = (pool * user.shares) / totalShares;
. // many more checks and effects

We have not found a reentrancy threat based on this potential attack vector, especially
since all key functions seem well-protected by the nonReentrant modifier. However,
our recommendation is to not use the pools with the (very few) tokens (mainly ERC777
implementations) that make such unusual call-backs to the sender of funds.

Recent experience with read-only reentrancies in mature protocols (e.g., Balancer)
shows that fully trusting nonReentrant flags is not wise: the
checks-effects-interactions pattern is the best protection against reentrancy and
violating it may result in attacks that are extremely hard to detect, as evident by recent

practice.

15

DeDAUBP DEDAUB.. COM

A4 [Thoughts on checks-effects-interactions in withdrawals INFO

In both CakePool and CakeFlexiblePool, the withdraw operation results in a transfer
to an untrusted party (msg. sendexr). For some tokens (more than in A3) this resultsin a
callback to the untrusted party. The code violates the checks-effects-interactions

pattern because a few checks and effects take place afterwards:

token.safeTransfer(msg.sender, currentAmount);

if (user.shares > 0) {
user.lastUserActionAmount =
(user.shares * balanceOf()) /
totalShares;
t else 3§
user.lastUserActionAmount = 0;

§

user.lastUserActionTime = block.timestamp;

In this case (unlike in A3), it seems easy to reorder the code so that the transfer
operation is last, thus eliminating all possibilities of reentrancy/read-only reentrancy.
If such reordering is to take place, the expression “balance0f()” should be replaced
with “balance0f() - currentAmount” and there should be a check that the amount
transferred was indeed currentAmount. (This suggestion should be tested thoroughly

if implemented.)

However, we have thoroughly inspected the code that accesses the storage variables
checked and updated above, and all current access is in nonReentrant functions.

Therefore, the current code appears safe.

A5 [Storage variable should be declared immutable INFO

16

DeDAUBP DEDAUB.. COM

In the TokenFlexiblePool, the variable tokenDecimals is set only once in the
constructor and is supposed to hold the decimals of the staking token. It is then used
inside the functions that convert values from or to 18 decimals precision.

This variable should be declared immutable to avoid all SLOADs that otherwise would

incur in the conversion functions adding unnecessary gas consumption.

TokenFlexiblePool: :tokenDecimals:15

// Dedaub: tokenDecimals should be made immutable to avoid the SLOADs in
// toEther and fromEther functions
uint8 private tokenDecimals;

function toEther(uint256 _amount) internal view returns(uint256) {
if(tokenDecimals < 18)
return _amount * 10 x* (18 - tokenDecimals);
else if(tokenDecimals > 18)
return _amount / 10 x%x (tokenDecimals - 18);
return _amount;

function fromEther(uint256 _amount) internal view returns(uint256) 1%
if (tokenDecimals < 18)
return _amount / 10 *%x (18 - tokenDecimals);
else if(tokenDecimals > 18)
return _amount * 10 x* (tokenDecimals - 18);
return _amount;

A6 [Gas inefficiencies that are easy to address INFO

There are some instances in the code where gas inefficiencies arise and can be

addressed easily.

17

DeDAUBP DEDAUB.. COM

CakePool:

e The second line makes a storage load of a value just stored one line above:

user.lockedAmount = userCurrentLockedBalance;
totallLockedAmount += user.lockedAmount;

e The second require can be put in an else branch of the if, so as to avoid

loading user.shares unnecessarily if _shares is zero:

if(_shares==0 && _amount > 0)
require(_amount > MIN_WITHDRAW_AMOUNT,
"Withdraw amount must be greater than MIN_WITHDRAW_AMOUNT");
// else
require(_shares <= user.shares, "Withdraw amount exceeds balance");

A7 | Code can be streamlined DISMISSED
(invalid)

In both CakePool and TokenPool, the following code in withdrawOperation can be

improved from:

uint256 currentShare = _shares;

uint256 sharesPercent = (_shares * PRECISION_FACTOR_SHARE) /
user.shares;

/] A
if (_shares == 0 && _amount > 0) 3%
// B
t else %
currentShare = (sharesPercent * user.shares)/PRECISION_FACTOR_SHARE;
§
to just

uint256 currentShare = _shares;

/] A
if (_shares == 0 && _amount > 0) 3%

18

DeDAUBP DEDAUB.. COM

A8 | Unused variables, functions INFO

The following variables or functions appear unused. (Note that the list may not be
exhaustive. Also, other variables/functions are not read in the code but may be

accessed externally, since they are set in the code and are publicly readable.)
e TokenFlexiblePool: :feeDebt
e TokenFlexiblePool: :payFee

A9 [Function may return a result that is not realistic INFO

The CakePool: :calculateWithdrawFee function returns a result even when the user
is still in Locked mode. This means that the result may not correspond to any fee that
the user will observe in practice. Care should be taken to not cache or otherwise rely
upon this result in off-chain code.

A10 | Magic constant INFO

Our recommendation is for all numeric constants to be given a symbolic name at the
top of the contract, instead of being interspersed in the code. In
TokenFlexiblePool: :withdraw:

A1l [Compiler bugs INFO

The code is compiled with Solidity 0.8.19. This version has some known bugs, which
we do not believe affect the correctness of the contracts.

19

https://github.com/ethereum/solidity/blob/develop/docs/bugs_by_version.json#L1834

DeDAUBP DEDAUB.. COM

DISCLAIMER

The audited contracts have been analyzed using automated techniques and extensive
human inspection in accordance with state-of-the-art practices as of the date of this
report. The audit makes no statements or warranties on the security of the code. On its
own, it cannot be considered a sufficient assessment of the correctness of the contract.
While we have conducted an analysis to the best of our ability, it is our recommendation
for high-value contracts to commission several independent audits, a public bug bounty
program, as well as continuous security auditing and monitoring through Dedaub
Watchdog.

ABOUT DEDAUB

Dedaub offers significant security expertise combined with cutting-edge program
analysis technology to secure some of the most prominent protocols in DeFi. The
founders, as well as many of Dedaub’s auditors, have a strong academic research
background together with a real-world hacker mentality to secure code. Protocol
blockchain developers hire us for our foundational analysis tools and deep expertise in
program analysis, reverse engineering, DeFi exploits, cryptography and financial
mathematics.

20

